73,785 research outputs found

    Mutant p53R270H drives altered metabolism and increased invasion in pancreatic ductal adenocarcinoma

    Get PDF
    Pancreatic cancer is characterized by nearly universal activating mutations in KRAS. Among other somatic mutations, TP53 is mutated in more than 75% of human pancreatic tumors. Genetically engineered mice have proven instrumental in studies of the contribution of individual genes to carcinogenesis. Oncogenic Kras mutations occur early during pancreatic carcinogenesis and are considered an initiating event. In contrast, mutations in p53 occur later during tumor progression. In our model, we recapitulated the order of mutations of the human disease, with p53 mutation following expression of oncogenic Kras. Further, using an inducible and reversible expression allele for mutant p53, we inactivated its expression at different stages of carcinogenesis. Notably, the function of mutant p53 changes at different stages of carcinogenesis. Our work establishes a requirement for mutant p53 for the formation and maintenance of pancreatic cancer precursor lesions. In tumors, mutant p53 becomes dispensable for growth. However, it maintains the altered metabolism that characterizes pancreatic cancer and mediates its malignant potential. Further, mutant p53 promotes epithelial-mesenchymal transition (EMT) and cancer cell invasion. This work generates new mouse models that mimic human pancreatic cancer and expands our understanding of the role of p53 mutation, common in the majority of human malignancies

    Inactivation and inducible oncogenic mutation of p53 in gene targeted pigs.

    Get PDF
    Mutation of the tumor suppressor p53 plays a major role in human carcinogenesis. Here we describe gene-targeted porcine mesenchymal stem cells (MSCs) and live pigs carrying a latent TP53(R167H) mutant allele, orthologous to oncogenic human mutant TP53(R175H) and mouse Trp53(R172H), that can be activated by Cre recombination. MSCs carrying the latent TP53(R167H) mutant allele were analyzed in vitro. Homozygous cells were p53 deficient, and on continued culture exhibited more rapid proliferation, anchorage independent growth, and resistance to the apoptosis-inducing chemotherapeutic drug doxorubicin, all characteristic of cellular transformation. Cre mediated recombination activated the latent TP53(R167H) allele as predicted, and in homozygous cells expressed mutant p53-R167H protein at a level ten-fold greater than wild-type MSCs, consistent with the elevated levels found in human cancer cells. Gene targeted MSCs were used for nuclear transfer and fifteen viable piglets were produced carrying the latent TP53(R167H) mutant allele in heterozygous form. These animals will allow study of p53 deficiency and expression of mutant p53-R167H to model human germline, or spontaneous somatic p53 mutation. This work represents the first inactivation and mutation of the gatekeeper tumor suppressor gene TP53 in a non-rodent mammal

    The Expression Levels of XLF and Mutant P53 Are Inversely Correlated in Head and Neck Cancer Cells.

    Get PDF
    XRCC4-like factor (XLF), also known as Cernunnos, is a protein encoded by the human NHEJ1 gene and an important repair factor for DNA double-strand breaks. In this study, we have found that XLF is over-expressed in HPV(+) versus HPV(-) head and neck squamous cell carcinoma (HNSCC) and significantly down-regulated in the HNSCC cell lines expressing high level of mutant p53 protein versus those cell lines harboring wild-type TP53 gene with low p53 protein expression. We have also demonstrated that Werner syndrome protein (WRN), a member of the NHEJ repair pathway, binds to both mutant p53 protein and NHEJ1 gene promoter, and siRNA knockdown of WRN leads to the inhibition of XLF expression in the HNSCC cells. Collectively, these findings suggest that WRN and p53 are involved in the regulation of XLF expression and the activity of WRN might be affected by mutant p53 protein in the HNSCC cells with aberrant TP53 gene mutations, due to the interaction of mutant p53 with WRN. As a result, the expression of XLF in these cancer cells is significantly suppressed. Our study also suggests that XLF is over-expressed in HPV(+) HNSCC with low expression of wild type p53, and might serve as a potential biomarker for HPV(+) HNSCC. Further studies are warranted to investigate the mechanisms underlying the interactive role of WRN and XLF in NHEJ repair pathway

    A novel regulator of the p53-mediated mitochondrial apoptotic pathway

    Get PDF
    The p53 tumor suppressor protein induces apoptosis in response to genotoxic and environmental stress. Recent studies have revealed the existence of a transcription-independent mitochondrial p53 apoptosis pathway, however the mechanism regulating p53 translocation to mitochondria and subsequent initiation of apoptosis was not known. Here, we show that Tid1, also known as mtHsp40 or Dnaja3, interacts with p53 and directs its translocation to mitochondria in cells exposed to hypoxia. Overexpression of Tid1 in tumor cells promoted mitochondrial localization of both wildtype and mutant forms of p53 and was able to restore the pro-apoptotic activity of mutant p53 proteins that were otherwise unable to induce apoptosis. Tid1's mitochondrial signal sequence and DnaJ domain were both required for the movement of the p53-Tid1 complex from the cytosol to the mitochondria. Our findings establish Tid1 as a novel regulator of p53 localization and apoptotic function

    Small molecule induced reactivation of mutant p53 in cancer cells

    Get PDF
    The p53 cancer mutant Y220C is an excellent paradigm for rescuing the function of conformationally unstable p53 mutants because it has a unique surface crevice that can be targeted by small-molecule stabilizers. Here, we have identified a compound, PK7088, which is active in vitro: PK7088 bound to the mutant with a dissociation constant of 140 μM and raised its melting temperature, and we have determined the binding mode of a close structural analogue by X-ray crystallography. We showed that PK7088 is biologically active in cancer cells carrying the Y220C mutant by a battery of tests. PK7088 increased the amount of folded mutant protein with wild-type conformation, as monitored by immunofluorescence, and restored its transcriptional functions. It induced p53-Y220C-dependent growth inhibition, cell-cycle arrest and apoptosis. Most notably, PK7088 increased the expression levels of p21 and the proapoptotic NOXA protein. PK7088 worked synergistically with Nutlin-3 on up-regulating p21 expression, whereas Nutlin-3 on its own had no effect, consistent with its mechanism of action. PK7088 also restored non-transcriptional apoptotic functions of p53 by triggering nuclear export of BAX to the mitochondria. We suggest a set of criteria for assigning activation of p53

    The Role of CaMK-II in the Development of Leukemia/Lymphoma in Danio Rerio

    Get PDF
    Acute lymphocytic leukemia (ALL) is a blood disorder characterized by aberrant proliferation of immature lymphocytes. ALL is the most common cancer in children and can result from external influences, such as radiation, or internal influences, such as genetic mutation. Additionally, Ca2+/calmodulin-dependent kinase II (CaMK-II) is a serine/threonine protein kinase whose increased expression has been found in various leukemias. Zebrafish and human immune cells are analogous and both species have conserved hematopoietic stem cell specification mechanisms. In this study, the constitutively active form of CaMK-II, resulting from a threonine to aspartic acid point mutation at the 287 base-pair location (T287D), was paired with the EGFP transgene using Tol2 Gateway technology and injected into zebrafish at the one-cell stage. The zebrafish expressing the transgene were outcrossed to wild type and mutant p53 zebrafish and then monitored for leukemic development using flow cytometry and pathology. Based on FACS results, the mutant p53 bearing the T287D mutation were found to have increased levels of lymphocytes compared to the mutant p53 zebrafish without the T287D mutation. Furthermore, hematologists confirmed the development of B-cell leukemia/lymphoma from histological slides prepared from the mutant p53 with the T287D mutation. The mutant p53 without the T287D mutation did not yield such results. These findings highlight a potential role of CaMK-II in the abnormal development of lymphocytes and provide a useful model, from which, drug studies can be performed for potential treatment options.https://scholarscompass.vcu.edu/uresposters/1244/thumbnail.jp

    Complementation of two mutant p53: Implications for loss of heterozygosity in cancer

    Get PDF
    AbstractRemarkably, a cancer cell rarely possesses two mutant p53 proteins. Instead, mutation of one allele is usually associated with loss of the second p53 allele. Why do not two mutant p53 co-exist? We hypothesize that two different p53 may complement each other, when expressed at equal levels. By titrating trans-deficient and DNA-binding-deficient p53 in cells with mutant p53 and by co-transfecting distinct mutant p53 in p53-null cells, we demonstrated activation of p53-dependent transcription. We suggest that, due to complementation of two mutant p53, cancer cells need to delete the second p53 allele rather than mutate it

    Zn(II)-curc targets p53 in thyroid cancer cells

    Get PDF
    P53 mutation is a common event in many cancers, including thyroid carcinoma. Defective p53 activity promotes cancer resistance to therapies and a more malignant phenotype, acquiring oncogenic functions. Rescuing the function of mutant p53 (mutp53) protein is an attractive anticancer therapeutic strategy. Zn(II)-curc is a novel small molecule that has been shown to target mutp53 protein in several cancer cells, but its effect in thyroid cancer cells remains unclear. Here, we investigated whether Zn(II)-curc could affect p53 in thyroid cancer cells with both p53 mutation (R273H) and wild-type p53. Zn(II)-curc induced mutp53H273 downregulation and reactivation of wild-type functions, such as binding to canonical target promoters and target gene transactivation. This latter effect was similar to that induced by PRIMA-1. In addition, Zn(II)-curc triggered p53 target gene expression in wild-type p53-carrying cells. In combination treatments, Zn(II)-curc enhanced the antitumor activity of chemotherapeutic drugs, in both mutant and wild-type-carrying cancer cells. Taken together, our data indicate that Zn(II)-curc promotes the reactivation of p53 in thyroid cancer cells, providing in vitro evidence for a potential therapeutic approach in thyroid cancers

    EVALUATING THE THERAPEUTIC EFFICACY OF RESTORING WILD-TYPE P53 ACTIVITY IN P53-MUTANT TUMORS

    Get PDF
    The p53 transcription factor is the most frequently altered in human cancers usually via missense mutations that undermine its transcriptional activity. Clinically, TP53 mutations have been shown to be remarkably predictive of refractoriness to treatment, resulting in poor outcome. Consequently, the development of p53 pathway activating agents is rapidly evolving and gaining more attention in cancer therapeutics research, with several small molecule compounds currently in preclinical and clinical trials. However, it remains largely unknown what types or proportions of p53-mutant tumors will respond to p53 restoration-based therapies. Using a mouse model of Li Fraumeni syndrome, we genetically restored wild-type p53 in mice carrying a germline p53R172H(corresponding to the TP53R175H hotspot in humans) missense mutation and observed heterogeneous responses. We found that approximately 50% of tumors responded by regressing in volume whereas 50% of tumors failed to regress after p53 reinstatement. To gain insight into the molecular events underlying therapeutic response to p53 restoration, we sequenced the transcriptome of twelve p53-mutant thymic lymphomas that were sensitive (n=8) or resistant (n=4) to p53 restoration. Differential gene expression analyses suggested a critical role for the TNF pathway and RARγ, an effector in the TNF pathway, in promoting response as they were up-regulated in tumors sensitive to p53 restoration. Furthermore, we demonstrate that pharmacological activation of RARγ with the synthetic retinoid, CD437, sensitizes resistant tumors to p53 restoration while additively improving outcome and survival in tumors inherently sensitive to p53 restoration
    • …
    corecore